Covers of rational double points in mixed characteristic

نویسندگان

چکیده

We further the classification of rational surface singularities. Suppose $(S, \mathfrak{n}, \mathcal{k})$ is a strictly Henselian regular local ring mixed characteristic $(0, p > 5)$. classify functions $f$ for which $S/(f)$ has an isolated singularity at maximal ideal $\mathfrak{n}$. The such are used to show that if $(R, \mathfrak{m}, excellent, Henselian, Gorenstein dimension $2$ and 5)$, then there exists split finite cover $\mbox{Spec}(R)$ by scheme. give application our result study $2$-dimensional BCM-regular singularities in characteristic.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Rational Points on Smooth Cyclic Covers

A conjecture of Serre concerns the number of rational points of bounded height on a finite cover of projective space Pn−1. In this paper, we achieve Serre’s conjecture in the special case of smooth cyclic covers of any degree when n ≥ 10, and surpass it for covers of degree r ≥ 3 when n > 10. This is achieved by a new bound for the number of perfect r-th power values of a polynomial with nonsin...

متن کامل

Exceptional Covers and Bijections on Rational Points

We show that if f : X −→ Y is a finite, separable morphism of smooth curves defined over a finite field Fq, where q is larger than an explicit constant depending only on the degree of f and the genus of X , then f maps X(Fq) surjectively onto Y (Fq) if and only if f maps X(Fq) injectively into Y (Fq). Surprisingly, the bounds on q for these two implications have different orders of magnitude. T...

متن کامل

The Dynkin Diagrams of Rational Double Points

Rational double points are the simplest surface singularities. In this essay we will be mainly concerned with the geometry of the exceptional set corresponding to the resolution of a rational double point. We will derive the classification of rational double points in terms of Dynkin diagrams.

متن کامل

Rational double points on supersingular K3 surfaces

We investigate configurations of rational double points with the total Milnor number 21 on supersingular K3 surfaces. The complete list of possible configurations is given. As an application, we also give the complete list of extremal (quasi-)elliptic fibrations on supersingular K3 surfaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of singularities

سال: 2021

ISSN: ['1949-2006']

DOI: https://doi.org/10.5427/jsing.2021.23h